| Vamos a estudiar en este apartado algunos ángulos que 
    pueden definirse sobre una circunferencia y las relaciones que existen entre 
    ellos. ÁNGULO CENTRAL 
			
				|   Se llama ángulo central al que tiene su vértice en el 
        centro de la circunferencia. En la figura está 
        representado el ángulo AOB y su arco correspondiente AB. La medida angular del arco AB es la de su ángulo central AOB. |  |  ÁNGULO INSCRITO Ángulo inscrito en una circunferencia es que tiene su 
        vértice sobre la circunferencia y sus lados cortan a la circunferencia. 
			
				|  |  |  
				| Mueve el vértice V y observa 
				que no varía la medida del ángulo AVB. | Comprueba que el ángulo 
				inscrito mide la mitad que el arco central que le corresponde. |  
        Los ángulos 
        inscritos que abarcan el mismo arco son iguales. 
        La medida 
        del ángulo inscrito es la mitad del ángulo central correspondiente. ÁNGULO INSCRITO QUE ABARCA UNA SEMICIRCUNFERENCIA. 
			
				|   Este caso particular es muy importante. Sea AB un 
        diámetro de la circunferencia. AOB = 180º El ángulo inscrito AVB ha de medir 180/2 = 90. 
        El ángulo inscrito en una 
        semicircunferencia es recto. Este resultado proporciona una excelente 
        forma de construir ángulos rectos y triángulos rectángulos. |  |  
				|  |  |  
			
				| 
				 |  |